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In this paper we have discussed a new theory of Laplace 

transform defined on Howell’s space. The definition of the 

Laplace transform on Howell’s space of test functions is 

given. Also discussed some results and Fundamental 

theorems of Laplace Transform by using the same. 

Laplace Transform defined on Howell’s space is linear, 

continuous and one-one mapping from 𝑮 to 𝑮𝒄 is also 

introduced. 
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INTRODUCTION 

We know that any locally integrable function of exponential growth on 𝑹𝒏 is Fourier 

transformable. A new theory of Fourier analysis developed by Howell, presented in an elegant 

series of papers [2-6] supporting the Fourier transformation of the functions on 𝑹𝒏. Mahalle 

et. al. described a new theory of Mellin transform defined on Howell’s space [7]. Bhosale [1] 

defined Fractional Fourier transform on Howell’s space. Motivated by the above work, we are 

extending this theory to support Laplace transform. The main goal of the present work 

therefore is the development of a theory generalizing the well known theory of tempered 

distributions, which supports the Laplace transform of all exponentially bounded functions on 

𝑹𝒏. 

In this paper, we propose a new theory of Laplace transform defined on Howell’s space. 

In section II new notation and basic spaces are introduced. Fundamental theorem is described 

in section III. Definition of Laplace transform on Howell’s space is given in Section IV. Some 

results are proved in section V and. The Laplace transform defined on this space is linear, 

continuous and one-one is stated in section VI. Lastly conclusion is given. 
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II. The Notations and Conventions: 

2.1. Here we list some notations & terminologies from Howell’s [2] and Zemanian [8] 

which  will be used extensively in our work. 

1. Powered Variable: Let𝑓: 𝐶𝑛 → 𝐶, for each 𝜉 ∈ 𝐶𝑛 , 𝜑𝜉𝑓 will denoted the function 

𝑓with powered variable by𝜉  given by 𝜑𝜉𝑓|𝑡 = 𝑓 𝑡𝜉  

2. Exponential Function: Let 𝜔 ∈ 𝐶𝑛 , where convenient 𝑒𝜔  will denote the function 

given by 𝑒𝜔 𝑡 = 𝑒𝜔𝑡   

3. Translation operator: Let 𝑓: 𝐶𝑛 → 𝐶, for each 𝜉 ∈ 𝐶𝑛 , 𝜃𝜉𝑓 will denote the translation 

of 𝑓 by𝜉 given by 𝜃𝜉𝑓 𝑡 = 𝑓 𝑡 − 𝜉  

4. Scaling operator: For each 𝛼 ∈ 𝐶,  𝑓will denote the function 𝑓with the variable 

scaled by 𝛼, that is 𝑓|𝑡 = 𝑓 𝛼 𝑡  

5. Strips in𝐶𝑛
: For each 𝛼 ≥ 0, 𝐵𝛼will denote subset of𝐶𝑛  given by 𝐵𝛼 =   𝑡 =

𝑡1,𝑡2,...𝑡𝑛∈𝐶𝑛:Im𝑡𝑘 ≤𝛼 , 𝑘=1 , 2 ,.... ,𝑛  

2.2 Basic spaces 𝑮 and 𝑮𝒄: 

Two spaces of functions 𝐺and 𝐺𝑐  will be of especial importance. They are defined below: 

2.2.1 Definition 𝐺 Space: 

     A function 𝜑: 𝐶𝑛 → 𝐶 is an element of 𝐺 if and only if both of the following hold: 

(1) 𝜑 is an analytic function of each complex variable. 

(2) For every 𝛼 > 0, Sup   𝑒𝛼  𝜌 𝑡   𝜑 𝑡   : 𝑡 ∈ 𝐵𝛼 < ∞. 

2.2.2 Definition 𝐺𝐶  Space: 

    A function 𝑓: 𝐶𝑛 → 𝐶 is an element of 𝐺𝐶  if and only if both of the following hold: 

(1) 𝑓 is an analytic function of each complex variable. 

(2) For every 𝛼 > 0, there is corresponding 𝛾 ≥ 0 such that 

 Sup   𝑒−𝛾  𝜌   𝑡   𝑓 𝑡   : 𝑡 ∈ 𝐵𝛼 < ∞ 

𝐺 with a suitable topology will serve as the space of test functions. The following facts 

will be of importance and should all be obvious from the above definitions: 

(1) 𝐺 and 𝐺𝐶  are both linear spaces closed under multiplication.  

(2) 𝐺 ⊂ 𝐺𝑐  

(3) G contains all functions of the form 𝜑 = 𝜃𝜉𝜂 𝛼 , where𝛼 > 0 and 𝜉 ∈ 𝐶𝑛 . 

(4) If 𝜑 ∈ 𝐺and 𝜉, 𝜁 ∈ 𝐶𝑛 , then 𝑒𝑖𝜉 𝜃𝜁𝜑 is also in 𝐺 and its restriction to 𝑅𝑛  is in 𝐿1 𝑅𝑛  

(5) 𝐺𝐶contains all exponential functions on 𝐶𝑛 . 

(6) Any exponential function 𝑒𝜉  with 𝜉 ∈ 𝐶𝑛  is an element of 𝐺𝐶 . 
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The topology on 𝐺 is defined by the set of norms    . 𝛼 ;  𝛼 ≥ 0  , 

where    𝜑 𝛼 = Sup 𝑒𝛼  𝜌 𝑡   𝜑 𝑡   : 𝑡 ∈ 𝐵𝛼  . 

Any function 𝜑, which is analytic in each variable is clearly in 𝐺 if and only if  𝜑 𝛼  is 

finite for every 𝛼 > 0. It is also obvious that if 𝛼 ≤ 𝛽, then 𝜑 𝛼 ≤  𝜑 𝛽 . 

Similarly the topology on 𝐺𝐶  is defined by the set of norms     .  𝛼 ;  𝛼 ≥ 0  

where  𝜑 𝛼 = Sup  𝑒−𝛾  𝜌 𝑡   𝜑 𝑡   : 𝑡 ∈ 𝐵𝛼  , for every 𝛼 > 0 there is a corresponding 𝛾 ≥ 0. 

                 𝐺𝐶with suitable topology will serve as the space of test functions. It is also 

obvious that if 𝛼 ≤ 𝛽then  𝜑 𝛼 ≤  𝜑 𝛽 . Following lemma expressed some general relation. 

2.3 Lemma:  

Let 𝛼 > 0, ℎ ≥ 0 and 𝜑 ∈ 𝐺. Then for any 𝑡 ∈ 𝐵𝛼  and 𝜆 ∈ 𝐶 with  𝜆 ≤ 𝛼, 

 𝜑 𝑡  𝑒𝜆  𝜌 𝑡  ≤  𝜑 𝛼+ℎ𝑒−ℎ  𝜌 𝑡 . 

Proof: Let 𝑡 be any arbitrarily fixed elements of 𝐵𝛼  and 𝜇 ∈ 𝐶with  𝜆 ≤ 𝛼. Then 

               𝜑 𝛼+ℎ = Sup  𝑒 𝛼+ℎ  𝜌   𝑡  𝜑 𝑡   ∶ 𝑡 ∈ 𝐵𝛼+ℎ  

                          Sup   𝑒𝜆  𝜌   𝑡   𝑒ℎ  𝜌 𝑡   𝜑 𝑡   : 𝑡 ∈ 𝐵𝛼+ℎ                      

  𝜑 𝑡   𝛼+ℎ𝑒−ℎ  𝜌 𝑡 ≥  𝜑 𝑡  𝑒𝜆  𝜌 𝑡   

Therefore, 

    𝜑 𝑡  𝑒𝜆  𝜌 𝑡  ≤  𝜑 𝑡   𝛼+ℎ𝑒−ℎ  𝜌 𝑡 . 

III. Fundamental Theorem: 

Here we have explained fundamentally useful theorem. 

3.1 Theorem: Let 𝜑 ∈ 𝐺 and 𝑓 ∈ 𝐺𝑐  then the mapping 𝜑 → 𝑓𝜑 is continuous linear 

mapping from 𝐺 to 𝐺.  

Proof: Since 𝑓 ∈ 𝐺𝑐 , therefore for all 𝛼 ≥ 0 there exists ℎ > 0 such that,  

𝑒−ℎ  𝜌 𝑡   𝑓 𝑡   ≤ 𝐼  (Say) 

We have to show that 𝑓𝜑 ∈ 𝐺. 

 𝑓𝜑 𝛼 = Sup 𝑒𝛼  𝜌 𝑡  𝑓 𝑡  𝜑 𝑡   : 𝑡 ∈ 𝐵𝛼 , 

where 𝐵𝛼  is as given in section II. 

But 𝜑 ∈ 𝐺 then by lemma 2.3 with 𝜆 = 𝛼, we have 

                                𝑒𝛼  𝜌 𝑡 𝜑 𝑡   ≤ 𝑒−ℎ  𝜌 𝑡   𝜑 𝛼+ℎ                                       (3.1) 

Now from equation (3.1), we get 

𝑒𝛼  𝜌 𝑡    𝑓 𝑡      𝜑 𝑡    ≤ 𝐼  𝜑 𝛼+ℎ   

Thus for any 𝜑 ∈ 𝐺, 𝑓𝜑 𝛼 ≤ ∞ 

It follows that 𝑓𝜑 is an element of 𝐺. So the mapping 𝜑 → 𝑓𝜑 is continuous linear 

mapping from𝐺to𝐺. 
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IV. Definition: 

Laplace transform on 𝐺: For each 𝑓 ∈ 𝐺and 𝐿 𝑓  be the function on 𝐶𝑛given by, 

[𝐿 𝑓 ] 𝑠 =  𝑓 𝑡 
𝑅𝑛

 𝑒−st𝑑𝛬𝑡  ,  

where 𝛬 will denotes the Lebesgue measure on 𝑅𝑛 . 

This transform is well defined on Howell’s space 𝐺, since 𝐺𝑐contains all exponential 

functions on 𝐶𝑛  that is 𝑒−st ∈ 𝐺𝑐 , hence for 𝑓 𝑡 ∈ 𝐺, 𝑓 𝑡  𝑒−st ∈ 𝐺 by fundamental theorem 

3.1. Now by property (4) P.344 [2], restriction of 𝑓 𝑡  𝑒−st ∈ 𝐺 to 𝑅𝑛belongs to 𝐿1 𝑅𝑛 . 

Hence there exists right hand side. 

V. Elementary Laplace Analysis on 𝑮:  

A preliminary development of Laplace analysis on 𝐺 is given and for this we have proved 

following results: 

5.1 Result:  

Let 𝛽 be any non-zero real number and let 𝑓 be any element of 𝐺. Then 
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5.2 Result:  

Let 𝑓 ∈ 𝐺. Then for any 𝜉 and 𝛽 in 𝐶𝑛 , 
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5.3 Result: 

 For 𝑓 ∈ 𝐺 and any 𝜔 ∈ 𝐶𝑛 ,  𝐿 𝑒𝜔𝑓    𝑠 = 𝜃𝜔  𝐿 𝑓     𝑠  

5.4 Result: 

If 𝑓 ∈ 𝐺, then 𝜓 = 𝐿 𝑓  is an analytic function of each variable and for 𝑘 = 1, 2, 3, − −
−−, 𝑛 

       (𝑖)        
𝜕

𝜕𝜎𝑘

 𝜓 𝜎 + 𝑖𝜁 = 𝐿  −𝑡𝑘 𝑓   𝜎 + 𝑖𝜁  

      (ii)         
𝜕

𝜕𝜁𝑘

𝜓  𝜎 + 𝑖𝜁 = 𝐿  −it𝑘 𝑓   𝜎 + 𝑖𝜁  

     (iii)        
𝜕

𝜕𝑠𝑘

𝜓  𝑠 = 𝐿  −𝑡𝑘 𝑓   𝑠  

VI. Continuity of 𝑳 𝒇  and Other Operators: 

Here we prove some theorems for continuity of 𝐿 𝑓  in 𝐺𝑐 . 
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6.1 Theorem: 

For each 𝑓 ∈ 𝐺, the mapping 𝜓: 𝑓 → 𝐿 𝑓  is a continuous, linear and one-one mapping 

from 𝐺 to 𝐺𝑐 . 

Proof: Let 𝑓 ∈ 𝐺and 𝜓 = 𝐿 𝑓 . To show that 𝜓 is in 𝐺𝑐 . We have to show that  𝜓 𝛼  is 

bounded for suitable 𝛾 ≥ 0. Let𝑠 be any element of 𝐵𝛼 . 

 𝜓 𝛼 = Sup  𝑒−𝛾  𝜌   𝑠   𝜓 𝑠   : 𝑠 ∈ 𝐵𝛼  

Now, 

 𝑒−𝛾  𝜌 𝑠   𝜓 𝑠    =  𝑒−𝛾  𝜌 𝑠     𝐿 𝑓    𝑠     

                      𝑒−𝛾  𝜌 𝑠     𝑓 𝑡  𝑒−st 𝑑𝛬𝑡𝑅𝑛  

                              𝑒−𝛾  𝜌 𝑠  Me−𝛼  𝑛  𝑡
𝑅𝑛 𝑑𝛬𝑡 , ∀𝛼 > 0 

           
𝑀

𝛼  𝑛
𝑒−𝛾  𝜌 𝑠  

               ∞, 𝛾 ≥ 0 

Therefore 𝜓: 𝑓 → 𝐿 𝑓 is continuous, linear and one-one mapping from 𝐺to 𝐺𝑐 . 

6.2 Theorem: 

For each non-zero real value𝛽,   is a continuous, linear and one-one mapping 

from 𝐺to 𝐺𝑐with inverse  1
satisfying the following equality. For each 𝑓 ∈ 𝐺and 𝜓 𝑡 =

𝑒−st ∈ 𝐺𝑐  
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Proof: The first part is easy and hence proof is not given here. 

Now we prove second part, 

Consider, 
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                     =  𝛽 −𝑛  𝑓 𝑢  
𝑅𝑛 𝑒

−𝑠
𝑢

𝛽 𝑑𝛬𝑢                               
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6.3 Theorem: 

For each 𝜔 ∈ 𝐶𝑛  and 𝜃𝜔 is a linear, continuous and one-one mapping from 𝐺 to 𝐺𝑐  with 

inverse 𝜃−𝜔 . Moreover for each𝑓 ∈ 𝐺 and 𝜓 𝑡 = 𝑒−st ∈ 𝐺𝑐 , 𝜃𝜔  satisfying the following 

equality   𝜃𝜔𝑓 
𝑅𝑛  𝜓 𝑑𝛬 =  𝑓 𝜃−𝜔𝜓 

𝑅𝑛  𝑑𝛬 .  

Proof : First part proof is so simple, so not given here. 
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Now consider, 

  𝜃𝜔𝑓  
𝑅𝑛

𝜓 𝑑𝛬 =  𝑓 𝑡 − 𝜔 
𝑅𝑛

 𝜓 𝑑𝛬𝑡  

                                                               =  𝑓 𝑢 
𝑅𝑛  𝑒−𝑠  𝑢+𝜔  𝑑𝛬𝑢  

                                                              =  𝑓 𝜃−𝜔𝜓 
𝑅𝑛  𝑑𝛬 

VII. Conclusion: 

In the present paper we have introduced a new theory of Laplace transform defined on 

Howell’s space. By using notations and terminology found some results. Proved Fundamental 

theorem and also proved that Laplace transform defined on Howell’s space is linear, 

continuous and one-one mapping from 𝐺to𝐺𝑐 . 
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